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Introduction

• Micro-Technology (MEMS) Demonstration
– MEMS Technologies Could Benefit From 

Frequent Access to Space
• Proof-of-Principle demonstration
• Testing of incremental changes
• Lifetime testing
• Rapid Identification of enabling technology

– Benefits From University Technology 
Demonstration

• Simple experiments can be performed
• Quick turn around (conception to integration)
• Additional resources available



Research-Based 
Microsatellite Program

• Leveraging of Faculty/Industry/Government 
Funded Research Is Driven By
– Willingness to find synergies
– Reasons to find synergies

• Allows a Program Philosophy Unique 
Among US Universities
– Missions are more difficult and risky

• State of the art technologies
• Minimal testing on the ground

– More difficult missions bring excitement



USC Microsatellite Program –
Brief Overview

• 140 Dedicated Students
– 120 Undergraduate students
– 20 Graduate students           

(6 Ph.D. students)
• Mentor program

– Faculty
– Industry
– Government
– Students

• Program Philosophy
– Crawl:  Shopping Cart Sat
– Walk:  Balloon Sat
– Run:  Traveler I
– Fly:  Aeneas (MEMS Tech. 

Demo.)



Traveler I: Launch

• Launch Vehicle
– Scorpius SR-XM-2
– Sub-Orbital Launch
– Mid-2003 Launch Date

• Flight Parameters
– Engine Burn: 127 sec 

(20,000 lb. thrust engine)
– Flight Duration: 630 sec
– Maximum Altitude:  330 km
– Maximum Acceleration ~ 

10 G’s
– Benign Vibration Levels 

Anticipated
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Traveler I:  Experiments

Micro-Propulsion Experiment
(MEMS)
FMMR

Micro-Pump Experiment
(MEMS)

Knudsen Compressor

Micro-Propulsion Experiment
FMMR Propellant Tank

Experiment Equipment Box
Characterization

COTS Components
(Accelerometers, Pressure,

Temperature)
(2 kg, 0.5 W)

3-Axis Magnetometer
(4 kg, 3 W)

3 kg, 
3.5 W



Traveler I:  Knudsen 
Compressor

• Addresses need for micro-scale vacuum pump for 
spacecraft sensors (e.g. mass spectrometers)

• No moving parts.
• No oil or working fluids.
• Recent availability of small pore membrane materials 

with very low thermal conductivities.
• Can operate on waste heat from other equipment.
• MEMS fabrication allows for batch fabrication of the many 

required stages.
• Can operate over a wide range of pressures.

– Roughing pump from 10 mTorr – 1 atm
– High pressure compressor from 1 atm to 10 atm



Traveler I:  Knudsen 
Compressor

Rarefied gas phenomena (free-molecular flow driven by gas-surface interactions)
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•Longitudinal Wall temperature gradient drives 
creep flow, counterbalanced by pressure driven 
return flow (Poiseuille flow)

•One of the driving mechanisms in Crooke’s
radiometer
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Traveler I:  Knudsen 
Compressor



ρ = 10mg/cc ρ = 50mg/cc ρ = 100mg/cc

•Membrane is made from Si aerogel

•0.6mm thick x 8mm x 10mm

•Optically heated to provide pumping

Traveler I:  Knudsen 
Compressor



Traveler I:  Knudsen 
Compressor
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Traveler I:  Knudsen 
Compressor



• Pump system will be evacuated and then 
filled with slightly less than 1 atm of N2
– Single specie easier to analyze
– Lower pressure allows leaks to be determined 

• Flight Profile:
– Pump illuminated
– pressure difference vs. time measured
– maximum pressure measured

Traveler I:  Knudsen 
Compressor

For More Information, Contact:  Marcus Young – marcusyo@spock.usc.edu



Traveler I:  Free Molecule 
Micro-Resistojet (FMMR)

• On-orbit maneuvering of nanospacecraft (m <= 10 kg)
– Mission enabling 
– Altitude raising, attitude control, drag makeup, stationkeeping

• Micro-thruster efficiency is extremely important 
– Extremely mass, volume and power limited
– Rule of thumb: 1 W/kg power available 
– 10 kg spacecraft ⇒ 3-7 W available for propulsion

• Free Molecule Micro-Resistojet (FMMR)
– MEMS fabricated electrothermal propulsion system

• Low stagnation pressure operation (50-500 Pa)
• Small characteristic dimensions, batch fabrication
• Electrically heat propellant flow on



Traveler I:  FMMR

Concept
• Systems approach has driven creative 

basis for the FMMR
• Example of how fluid/gas dynamics at micron 

scales can be beneficially exploited

Benefits
• Low pressure operation

• Reduces MEMS valve leakage
• Reduces propellant storage tank mass

• Phase change of propellant
• Operates on propellant vapor pressure
• Reduces storage volume

• Reduces likelihood of single point failures
• Permits large range of thrust levels without

significant loss in performance

Expansion Slot

Escaping Propellant 
Molecule Path
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• Uniform Free Molecule Flow Through a Finite L/D Slot
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Traveler I:  FMMR



• 13 x 42mm, 400µm-thick LSN wafer
• Heater

– Cr (300Å) + Pt (600Å) + Au (8000Å)
– 400µm wide, 0.45m total length

• Expansion slots
– 50 slots
– 100µm wide, 3 to 5mm long

Traveler I:  FMMR

• FMMR Scheduled for Flight on 
ASU/UNM/CU 3-Corner Sat Mission

• Traveler I will test MEMS Packaged 
FMMR (3CS Macro-packaged)

• Shuttle Flight of 3CS Mission Will 
Be Complimented by 10 G Scorpius
Launch



Traveler I:  FMMR

• FMMR Packaging
Pyrex 7740 Wafer

FMMR Thrust Chip

Pressure 
Measuring Port

Teflon Plenum

Propellant Inlet



Traveler I:  FMMR

• Important for fluid flow management in MEMS devices
• Bond strength important for the design of MEMS 

components
• Bond strength determines:

• Maximum pressure handling capability
• Minimum bond width required for a given pressure

• The voltage and temperature used during the bonding 
affect the pulling strength.

• Separate Anodic Bond Experiment tests:
– Materials
– Thickness
– Voltage 
– Temperature

• FMMR and Knudsen Compressor also incorporate anodic 
bonding



Traveler I:  FMMR

• Bonding requires a 
conductive substrate 
and a sodium-rich 
glass substrate

• A voltage potential is 
applied across the 
substrates

• Positive ions migrate 
towards the cathode

• Electrostatic 
attraction holds 
materials together

Maluf, N



Traveler I:  FMMR

Knudsen

1.0 mmPyrex400 µm
FMMR
Silicon
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Traveler I:  FMMR 
Propellant Tank

• Water used as a propellant for the FMMR due to 
its favorable vapor pressure at typical 
microsatellite temperatures

• Isolate water in propellant tank away from 
valves, regulators, and nozzle (mitigate freezing 
issues)

• Use surface tension of liquid to passively 
manage propellant
– No power required to heat assembly
– Will not allow liquid water to pass (hydrophobic)
– Sufficient open area to allow water vapor to pass 

(FMMR propellant)
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Traveler I:  FMMR 
Propellant Tank

Want to counteract Fw with liquid
propellant surface tension

Nano-porous material needed with
average pour diameter less than 
700 nm in non-wetting material



• Two Propellant Tanks
• Multiple orientations

– Worst case scenario
– Best case scenario

• Water detection circuit

Traveler I:  FMMR 
Propellant Tank



Traveler I:  PDR

• Preliminary Design Review
– 20 April 2002
– 9 AM to 5:30 PM  (USC Campus)
– Web Simulcast
– Web-cast will be archived on website

• More Information
– Call:  213-740-1635
– http://microsat.usc.edu
– e-mail:  aesat@spock.usc.edu
– Newsletter (copies available)
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